Uczenie maszynowe – możliwości i wyzwania

0
Jędrzej Fulara, CTO w Sparkbit
Jędrzej Fulara, CTO w Sparkbit

Machine learning to obecnie jeden z najczęściej pojawiających się terminów w świecie technologicznym. I mimo, że koncepcja uczenia maszynowego jest znana od dawna, to dopiero rozwój technologiczny ostatnich lat spowodował, że zyskała ona na popularności i dzisiaj jest jednym z trendów, które zmieniają obraz współczesnego biznesu. Czy machine learning jest tylko dla dużych graczy? Nie. Jednak, żeby firma mogła w pełni wykorzystywać potencjał tej technologii, musi świadomie zmierzyć się z wyzwaniami jakie wiążą się z takim wdrożeniem.

Machine learning – aktualny etap rozwoju – szczyt oczekiwań

Technologie nieustannie poddawane są  procesom rozwojowym – od wynalezienia, przez wzbudzanie euforii, po stopniową komercjalizację. Dobrze obrazuje to model Gartnera ,,Hype Cycle for Emerging Technologies” (cykl szumu wokół technologii lub cykl dojrzałości technologii), który wyróżnia pięć faz przez które, zdaniem ekspertów instytutu, przechodzi każda nowa technologia w czasie swojego rozwoju. Najpierw mamy więc falę wznoszącą, czyli pierwsze informacje na temat technologii, badania, wdrożenia testowe, potem druga faza – dużo szumu oraz wielkie nadzieje i oczekiwania związane z technologią, tu mamy szerokie zainteresowanie ze strony prasy, pierwsze wdrożenia w firmach. Następnie ma miejsce trzecia faza – rozczarowania, wynikającego z pojawiających się ograniczeń danej technologii. Czwarta faza to naprawa tych ograniczeń i pojawiające się kolejne oczekiwania, zaś piąta faza to stabilizacja, faza dojrzała – czyli oczekiwania i możliwości są zbliżone, technologia osiąga pełną dojrzałość rynkową. W której fazie rozwoju jest teraz uczenie maszynowe? Według modelu cyklu szumu wokół technologii, jaki w 2017 roku zaprezentowała firma Gartner, machine learning znajduje się teraz w drugiej fazie rozwoju obok takich technologii jak m.in.: wirtualni asystenci, blockchain, autonomous driving (samochody autonomiczne), connected home (dom podłączony do internetu), czy cognitive computing.

Czytaj również:  Deloitte: Globalne przychody branży obronnej i lotniczej w 2017 roku wyniosły 685,6 mld dolarów